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Lateral Feature Enhancement Network for
Page Object Detection

Cao Shi™, Canhui Xu", Hengyue Bi

Abstract—In this article, a lateral feature enhancement (LFE)
backbone network is proposed to enrich feature representation
effectively for page object detection (POD) across various scales.
Our LFE backbone network has three feature enmhancement
modules. First, feature enhancement of large page object is a
bottom-up feature pyramid, enhancing features of large page
objects, which convey more important information to readers.
Second, the LFE includes a top-down feature pyramid propa-
gating representative semantical features to lower layers and a
lateral connection for feature enhancement in each layer. Third,
lateral skip connection is designed to retain the original feature
details. The stacking strategies of bottom-up, top-down, and
lateral connections are beneficial to overall object detection. Visu-
alization of feature indicates that the proposed LFE backbone
network enhances global semantic information as well as detailed
features of small page objects. Comparative experiments on the
two state-of-the-art datasets show that it achieves excellent results
with 0.950 mean of AP (mAP) on PubLayNet and 0.892 mAP on
POD with more strict metric intersection over union (IoU) = 0.8,
respectively. Compared with both computer vision (CV)-based
unimodal detectors and multimodal detectors, the proposed LFE
network performs excellently. Visual effect experiments compare
the performances of CV-based detectors. The results show that
our detector outperforms others with strict metric, especially in
the detection of small page objects.

Index  Terms—Deep  convolutional neural network
(CNN), document image, feature enhancement, page object
detection (POD).

I. INTRODUCTION

AGE object detection is a crucial preceding step in
automatic document analysis and understanding, which
aims to classify the segmented regions semantically into tables,
figures, formulas, texts, and other page parts, so as to let a
machine understand content. Page objects have a large range of
size variation. Different from natural scene images, document
images have their own distribution. Comparatively, objects,
such as figures and tables, belong to large objects. Formula
and section title are comparatively small objects. Text blocks

occupied majority of the distribution.
For natural scene image objects detection, there exist two
categories of detectors to extract visual features, which are
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one-stage and two-stage detectors [1]. One-stage detectors
include You Only Look Once (YOLO) [2], YOLO v4 [3], You
Only Look At CoefficienTs ++4 (YOLACT++) [4], Single
Shot MultiBox Detector (SSD) [5], RetinaNet [6], Single-
Shot Object Detector based on Multi-Level Feature Pyramid
Network (M2Det) [7], RefineNet [8], and so on. One-stage
detectors are suitable for real-time tasks [9], [10], [11], usually
without region proposal network (RPN). In contrast with one-
stage detectors, two-stage detectors achieve high accuracy by
proposing regions for detected objects [12], [13], [14] for
classification and localization. Due to the RPN module, two-
stage detectors, such as regions with convolutional neural
network (CNN) features (R-CNN) [15], Fast R-CNN [16],
Faster R-CNN [17], Mask R-CNN [18], and so on, are able
to filter out a large number of negative locations, which
brings better accuracy but less efficiency when compared
with one-stage detectors. According to the requirements of
different applications, it suggested that the network can be
designed to make a trade-off between accuracy and speed.
Two kinds of detectors both need backbone network to extract
features, which are generally based on convolutional neural
networks (CNNs), such as AlexNet [19], Visual Geometry
Group (VGG) [20], residual network (ResNet) [21], and so on.
To further utilize features at various scales, a feature pyramid
network (FPN) [22] is proposed. In visual detection task,
FPN is integrated to backbone, such as ResNet, for extracting
region of interest (Rol) features from various levels of feature
pyramid. Lower resolution feature map from high level has
richer semantic information. Meanwhile, the high-resolution
low-level layers contain spatial localization information, since
the extracted feature maps are decisive fundaments for network
performance [23].

In the field of page object detection (POD), deep learning
methods are introduced for different tasks, such as table
detection [24], [25], formula detection [26], and various
POD [27], [28], [29], [30]. Among these methods, most are
two-stage detectors. The POD competition in the Interna-
tional Conference on Document Analysis and Recognition
(ICDAR2017) [31], [32] summarizes top seven detectors, five
of which are based on two-stage detector Faster R-CNN [17],
and one of which is based on one-stage detector SSD [5].
More recent competition on scientific literature parsing (SLP)
in ICDAR2021 [33], [34] concludes top nine detectors, which
at least has five two-stage detectors, and the rest four teams
did not provide their detector information. In competitions
POD2017 [32] and SLP [34], backbone networks of two-stage
detectors are mostly VGG [20], ResNet [21], or their varia-
tions. Apart from CNN-based backbone network, traditional
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methods are also integrated into deep learning architecture for
feature extraction. For example, Li et al. [35] use conditional
random field (CRF) to extract spatial feature for CNN, and
Younas et al. [36] consider traditional computer vision (CV)
representations (color, connection, and so on) as inputs for
deep learning model.

Compared with the previous work, the main novelties of
this article are the following.

1) Present feature enhancement of large page objects
according to page object distribution caused by 2-D
translations and zooming in/out of page object in the
page layout process.

2) Propose lateral feature enhancement (LFE) with the aim
to enhance feature representation of small objects as
well as large objects. This enhancement is top-down
with LFE in each layer, whereas enhancement in (1) is
bottom-up. Two kinds of enhancement are designed for
page objects detection across various scales. It is noted
that the introduction of low-level spatial information to
deeper layers can help large objects recognition. Mean-
while, the propagation of high-level semantic signals
upsampled to higher resolution low-level feature layers
enhances the performance semantically.

3) Design a lateral skip connection from backbone network
to feature pyramids to enhance features in multiple
scales.

The rest of this article is organized as follows. Related
works are introduced in Section II. Our feature enhancement
backbone network and two-stage detector are proposed in
Section III. Experimental results and discussion are presented
at Section I'V. The conclusion is given in Section V.

II. RELATED WORKS

To deal with scale variation task, input image pyramid
methods were initial attempts. As rapid development of deep
learning architectures, feature pyramid becomes more practical
for object detection. It is well known that the feature pyramid
module can be easily fit into deep learning networks. Both
one-stage and two-stage detectors apply feature pyramids.

As a typical one-stage detector, SSD [5] constructs feature
pyramid by selecting two layers from backbone VGG16 and
four layers from stride 2 convolution. Deconvolutional single
shot detector (DSSD) [37] uses deconvolution layers from a
single layer of backbone ResNet network. Deconvolution lay-
ers are to aggregate context and explore high-level semantics
for shallow features.

The well-known FPN [22] utilizes lateral connections to
fuse feature maps in a top-down manner. Recently, M2Det [7]
develops thinned U-shape modules (TUMs) and exploits the
decoder layers of each TUM for detecting objects of different
scales. Mixture feature pyramid network (MFPN) [38] assem-
bles top-down, bottom-up, and fusing-splitting FPN in parallel
manner to enhance small-, large-, and medium-sized object
detection, respectively. Path aggregation network (PAnet) [39]
adds bottom-up path augmentation upon FPN to boost local-
ization information from lower layers. It is claimed that stack-
ing multiple feature pyramids proposed by neural architecture
search (NAS)-FPN [40] increases detection accuracy.
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Typically, FPN architectures use top-down and bottom-
up to detect objects with various sizes. By stacking feature
pyramids in parallel or sequentially, the multiscale FPN can
significantly enhance feature representation. Top-down FPN
integrates high-level semantic to low-level features for small
objects representation. In contrast, bottom-up FPN introduces
low-level spatial information to high-level features for enrich-
ing large objects description. There are other proposal-based
methods focusing on anchor adjustment to deal with scale
variation. Connectionist text proposal network (CTPN) [41]
develops vertical anchors and connects fine-scale text propos-
als so as to detect text with various scales in natural images.

In the field of document image analysis, deep learning gains
its popularity to detect, segment, and recognize document
page objects. Some CNNs work for end-to-end pixel level
analysis, whereas others aim to detect and classify regions with
bounding boxes. In ICDAR2017 POD competition, almost all
the participated teams used deep learning for object detection,
including popular SSD, Faster R-CNN-based models aiming to
detect tables, mathematical equations, and figures [32]. Also,
in ICDAR2021 SLP competition, half of the detectors are
based on Mask R-CNN, which generally apply ResNet and
FPN as a backbone network [34].

The research motivation behind our work is to consider
inherent characteristics of document image. We analyze 3-D
projection in natural image and 2-D transformation in layout
design of page image, so as to design an effective backbone
network for feature extraction from document image. Also,
a two-stage detector for page object is realized based on
the proposed backbone network. The backbone network is
designed in Section III.

III. LFE NETWORK

A. Analyzing 3-D Projection in Natural Image and 2-D
Transformation in Layout Design of Page Image

In natural scene, objects are projected on an image with
perspective projection. As shown in Fig. 1(a), suppose aircraft
tractors A moves to the position of B with the same orientation,
the size in image decreases dramatically, and different sides of
it appear in image. In this case, the same object shows different
sizes and appearances because of 3-D projection. In the field of
object detection, aircraft tractor B is called “small object” [22].
Fig. 1(b) shows another case of 3-D projection of three buses:
front view of bus A, and back view of bus B and C. If bus A
was in position B or C with the same orientation of B or C,
its different part was projected in the 2-D image. Without
considering zooming in/out in image, front view, back view,
and side view of a bus have different image features for CV.
Therefore, 3-D projection changes feature of the same object
in 2-D image.

On the other hand, 2-D transformation of page objects
is essentially different from 3-D projection in natural scene.
As shown in Fig. 2(a), there are two tables A and B, of which
positions are swapped in Fig. 2(b) or zooming out two tables to
add tables C and D in Fig. 2(c). As for page object, swapping
position, zooming in/out, or others 2-D transformation is used
to communicate information clearly and effectively. To design
a good page layout, 2-D transformation of page object rarely
involves shearing, not to mention projection transformation.
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(a)

()

Fig. 1. 3-D projection of objects in natural scene (Microsoft COCO (MSCOCO) dataset [42]). (a) Two aircraft tractors. (b) Two aircraft tractors.

(b)

(©)

Fig. 2. 2-D transformation of page objects (PubLayNet dataset [43]). (a) Two tables. (b) Exchanging positions. (c) Zooming in/out.

Through analyzing 3-D projection in natural image and
2-D transformation of page object, we get the following
conclusions.

1) “Small object” in natural image is caused by perspective
projection. It does not mean “small object” in natural
image is not important.

2) Page object is not concerned with perspective projec-
tion. “Small object” in document image is designed to
let large object show more important information. For
example, figure is larger than footer. Their sizes will not
change.

3) Different orientations of object in natural scene result in
different image features.

4) Orientation of page object will not change in the process
of layout design.

B. LFE Backbone Network

According to the abovementioned four conclusions,
we design a backbone network, and its purpose is to enhance
lateral feature in a feature pyramid. The design principles
include the following.

1) ResNet [21] is employed to extract fine/coarse features,
as shown in Fig. 3. From C, to Cs, feature resolution
is reduced.

2) Feature enhancement of large page object follows
ResNet as shown in Fig. 3 with three up arrows,
because large object features in bottom layer remain
unchanged when it passes three up arrows. According

3)

4)

to conclusions 1) and 2), in document image, large
object conveys more important information; therefore,
we design this path to enhance feature, which can be
denoted as follows:

vy =1 =2 (1)

U,;l(l)@ci 2<i<5

where i represents the ith layer, “1” of U;(1) means
the first block of feature enhancement, and & is feature
enhancement operation.
LFE follows 2) in Fig. 3 with three down arrows.
First, large object features in top layer are enhanced
along the top-down path. Second, image feature of page
object will not change according to conclusions 3) and
4); hence, the features of small page objects are in
lower layers with relatively high resolution. LFE are the
following:

D;(1) = I Ui =2 @
DiJrl(l) @U,(l) 2<i<5

as for D;;1(1), and it is enhanced by U;(1) through a
lateral path.
Feature enhancement with lateral skip runs after 3),
inspired by deep residual learning [21], [44]. Feature
can be enhanced by original feature in the same layer
(the same resolution)

F()=D;(H®C; 2<i<5. (3)
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Fig. 3. LFE backbone network.

o

Lateral Feature Enhancement
Backbone Network

Fig. 4. Framework of LFE network.

5) A feature enhancement block consists of (1)—(3). Fig. 3
shows the first block denoted as “(1),” the second block
and the Nth block.

C. Implementation of Backbone Network

The implementation of ResNet-101 follows configuration
in [21]. The numbers of feature channel in layers C,, Cs,
C4, and Cs are 256, 512, 1024, and 2048, respectively. The
resolution reduction rate is 0.5 from a layer to its above
neighbor. For example, the width and the height of feature in
C; are 1/2 of feature in C,. The feature enhancement operation
in (1)—(3) is defined as a sequence in the following:

1) resample resolution;

2) resample channels using 1 x 1 convolution;

3) element-wise addition;

4) 3 x 3 convolution.

When features in a layer are fused with another layer,
resolution should be resampled to match the target layer.
In step 1), resolution is downsampled from bottom to top,
whereas resolution is upsampled along the top-down arrows.
Step 2) fuses features using element-wise addition. To let
the number of feature channels in a layer match another
layer, 1 x 1 convolution is utilized in step 3). Moreover,
1 x 1 convolution extracts and fuses features from all feature
channels. In step 4), 3 x 3 convolution is employed to extract
and fuse features not only in feature slice but also from all
feature channels.

Take U;(1) in (1) for example; the resolution of U, (1)
is downsampled by 1/2, and the channels are upsampled by

.

Bounding Box I#

Mask

Figure
Text
 JFormula
© JTable

Title
List

RPN Rol Align

Object Class

2 using 1 x 1 convolution, and then, element-wise addition
is performed of U,(1) and Cj. Finally, 3 x 3 convolution is
implemented to output Us(1). In (2), the resolution of Ds(1)
is upsampled by 2; the channels are upsampled by 2 using
1 x 1 convolution, and then, it is added to U4(1). Eventually,
D4 (1) is generated using 3 x 3 convolution. There is a little
difference in (3) that 2) is not executed. This example is in
the first block of Fig. 3. The feature enhancement operation
in the second block follows the same sequence 1)—4).

D. LFE Network Architecture

As shown in Fig. 4, the proposed LFE network consists
of three parts: the proposed LFE backbone network described
in Fig. 3, RPN and Rol alignment. The configuration of the
last two parts follows the implementation in [18]. The input
is a document image, in which there is a figure, several para-
graphs, and a section title. The outputs have three components:
bounding boxes indicating location of detected objects, pixel-
wise masks predicting locations, and object classification.

1V. EXPERIMENTAL RESULTS
A. Visualization of Feature Enhancement

To get insight into feature enhancement process of the
proposed backbone network, features in LFE backbone net-
work (Fig. 3) are visualized in Figs. 5-7. The LFE network
(Fig. 4) is trained with eight GPUs(TITAN XP 12 G) for
90000 iterations, using more than 300k document images
in the training set of the PubLayNet dataset [43]. Two
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(1) =U2(1)

Page 1 D2(1)

C2(1)=U2(1)

Page 2 D2(1)

Fig. 5. Visualization of features in the bottom layer of backbone network.

images in development set are used to investigate feature
enhancement.

Fig. 5 shows original images, ground truths, and features in
the bottom layer of backbone network (Fig. 3). The feature
U, (1), which is directly from ResNet-101, has more detailed
features. Especially, the edge of figure is enhanced in the
second row, and so do the lines of table. After “feature
enhancement of large page object” and “LFE” in Section III-B,
D, (1) loses local information, such as edge details in a figure;
however, global information is enhanced, that is to say, pixels
in foreground merge together to enhance contrast to merging
pixels in background.

Using formula (3), D,(1) & C, to get F2(1). Apparently,
a detailed feature is enhanced from C, to F,(1). There
is a sharp contrast between foreground and background in
D,(2). Furthermore, the contrast becomes sharper in F,(2).
Comparing F(2) with ground truth, in the first row, list object
(in “cyan” bounding box), text object (in “green” bounding
box), and title object (in “red” bounding box) in “ground truth
17 correspond to “blue” foreground, which is distinguished
from background by “red”/“yellow” border in F,(2). In the
second row, the contrast between figure object and background
is sharper.

The implementation of “LFE” leads to accurate detection
of “small object,” such as in Fig. 6; section title with “red”
bounding box in ground truth 1 corresponds to a blue area
with clear-cut boundary in F,(2). Especially, although the
PubLayNet dataset [43] does not provide annotations for page
number and header, our backbone network is capable of
extracting visual features of them, as shown in Fig. 6.

On the other hand, features in top layer of backbone are also
enhanced. Take Cs of page 1 in Fig. 7 for example, and global
information is enhanced from Cs to Ds(1) to obtain Fs(1).
Comparing F5(1) with ground truth 1 in Fig. 5, Fs(1) clearly
indicates the positions of two columns in page 1. Therefore,
the proposed backbone network (Fig. 3) is able to enhance
features on both local information and global information.

B. POD Evaluation

The POD competition dataset in ICDAR2017 [32] is used
to evaluate the proposed LFE network. This dataset is the

F2(1) =U2(2)

F2(1) = U2(2)

5020310

D2(2) Ground Truth 1

D2(2) Ground Truth 2

Page Number Header

Ground Truthl Title

F2(2) of Page 1

Fig. 6. Detection of unlabeled object and small object.

C5 of Page 1

Fig. 7. Visualization of feature enhancement in the top layer.

most widely used to evaluate the page object detector. It is
collected from scientific papers on the web CiteSeer. In total,
there are more than 2000 document images with three types
of page objects (formula, table, and figure) and various lay-
outs (single column, two columns, and multicolumn). In the
competition, 1600 images were used as training set, and test
set had 817 images. We used the same training set and
test set. Apart from eight detectors in the competition, three
more recent detectors are used to evaluate the proposed LFE
network, including Li et al. [35], YOLACT++ [4], and Adap-
tive Training Sample Selection (ATSS) [45]. YOLACT++,
ATSS, and LFE network are trained with eight GPUs (TITAN
XP 12 G) for 90000 iterations.

Table I compares the performance of different detectors with
the same configurations of intersection over union (IoU), aver-
age precision (AP), and mean of AP (mAP) in ICDAR2017
POD competition [32]. The last two rows show our LFE
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TABLE I

EVALUATION OF THE PROPOSED LFE NETWORK ON THE
ICDAR2017 POD DATASET [32]

AP(IoU=0.6) | AP(IoU=0.8)
Method Formula Table Figure mAP \ Formula Table Figure mAP
NLPR-PAL 0.839 0933 0.849 0.874| 0.816 0911 0.805 0.844
icstpku 0.849 0.753 0.679 0.760 | 0.815 0.697 0.597 0.703
FastDetectors 0.474 0925 0.392 0.597| 0427 0884 0.365 0.559
VisInt 0.524 0914 0.781 0.740 | 0.117 0.795 0.565 0.492
SOS 0.537 0931 0.785 0.751| 0.109 0.737 0.518 0.455
UITVN 0.193 0924 0.786 0.634 | 0.061 0.695 0.554 0.437
Matiai-ee 0.116 0.781 0.325 0.407 | 0.005 0.626 0.134 0.255
HustVision 0.854 0.938 0.853 0.882| 0.293 0.796 0.656 0.582
Li et al. [35] 0.878 0.946 0.896 0.907 | 0.863 0.923 0.854 0.880
YOLACT++ [4] 0.587 0.929 0.885 0.800 | 0299 0.892 0.839 0.677
ATSS [45] 0929 0971 0.886 0.929 | 0.850 0.944 0.853 0.882
LFE-1 0950 0.961 0.868 0.927 | 0.923 0922 0.824 0.890
LFE-2 0.957 0959 0.871 0.929 | 0.926 0.923 0.826 0.892

networks with “1” and “2” feature enhancement block(s),
according to Fig. 3.

As for IoU threshold of 0.6, our LFE-2 and ATSS [45]
obtain the best mAP 0.929. ATSS adaptively selects positive
and negative samples according to statistical characteristics of
object, and it brings contribution to common object detection.
Thus, it might achieve slight improvement on figure detec-
tion, which is similar to common object in texture diversity.
Whereas, our LFE-2 enhances the features of an image itself.
Also, our LFE-1 gets the second mAP of 0.927. Hence, the
LFE network with “two” feature enhancement blocks shows
better performance than LFE-1 with “one” block. For “small
object” formula, our LFE-2 and LFE-1 acquire top two APs:
0.957 and 0.950. Due to “LFE,” features of “small object” are
enhanced in lateral direction in the bottom layer of backbone
network (Fig. 3), so as to our detectors outperform others.
When it comes to the table, ATSS and our LFE-1 gain the
best two APs: 0.971 and 0.961. Li et al. [35] make well use
of prior knowledge of line distribution in page, so the detector
is able to clearly distinguish figure from other objects (AP
for figure: 0.896). Meanwhile, this is why Li et al. performs
well for all page objects. YOLACT++ [4] is not designed
for document image processing; therefore, it is inferior to
Li et al.

Given the IoU threshold of 0.8, it seems similar conclusions.
Our LFE-1 and LFE-2 achieve the best two mAPs: 0.892 and
0.890. They overcome others to detect formula. ATSS gets the
best score on table, and Li ef al. achieve the best AP on figure.
It is safe to conclude that our LFE-1 and LFE-2 show the
best performance according to mAP and AP on “small object”
formula. Li et al. performs well because of considering prior
knowledge of page object distribution in document image.
ATSS is good at detecting table and figure.

As shown in Table I, table detection result of LFE-2
achieves 0.959 mAP at 0.6 IoU threshold, and it is 0.002 lower
than LFE-1. This issue might be attributed to slight learning
degradation when we train a deeper LFE. However, we mainly
focus on investigating the efficiency of the proposed LFE
network on document object detection in this article. Also,
it can be seen that when the baseline is equipped with single
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(@) (b)

©) (d

©

Fig. 8. Visualization of table and figure detection on the POD2017 dataset
with a CP of 0.9. (a) Ground truth. (b) LFE-2, CP = 0.9. (¢) LFE-1,
CP = 0.9. (d) ATSS, CP = 0.9. (¢) YOLACT++, CP = 0.9.

LFE block “LFE-1,” we get comparable results on both of the
POD dataset and the PubLayNet dataset.

C. Comparison With Multimodal Networks

In ICDAR 2021 SLP Competition (ICDAR2021-SLP) [33],
[34], several top-level detectors are using multimodal net-
works. To compare performance with the multimodal detector,
the same dataset PubLayNet dataset [43] in [CDAR2021-SLP
is used to train our LFE-1 and LFE-2. Totally, more than 340k
document images are randomly split into train, development,
and test sets, and the ratio is 32:1:1. The dataset includes five
types of document objects: text, title, table, figure, and list. The
ICDAR2021-SLP competition uses the detection evaluation
metrics of Common Objects in Context (COCO) [46]: AP and
mAP averaged over multiple intersection over ten IoU from
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Fig. 9. Visualization of formula detection on the POD2017 dataset with various CP values. (a) Ground truth. (b) LFE-2, CP = 0.9. (c) LFE-1, CP = 0.9.
(d) LFE-1, CP = 0.8. (e) ATSS, CP = 0.9. (f) ATSS, CP = 0.8. (g) ATSS, CP = 0.7-0.5. (h) ATSS, CP = 0.4. (i) YOLACT++, CP = 0.9-0.4.

0.50 to 0.95 with a step size of 0.05. In Table II, YOLACT++,
ATSS, and LFE network are trained with eight GPUs (TITAN
XP 12 G) for 90000 iterations.

As shown in Table II, vision, semantics, and relations
(VSR) and SRK achieve two highest mAPs: 0.957 and 0.950.
VSR takes advantage of portable document format (PDF)
parsing to extract structured information, such as texts and
their position for a natural language processing (NLP)-based
flow in its network framework. Meanwhile, the other flow is
CV-based to process document image. Different from VSR,

SRK utilizes two models, all based on CV, in which one is
designed for small page object: title, the other is for other
objects. Our LFE-1 and LFE-2 get mAP: 0.950 and 0.948;
therefore, they are comparable to VSR and SRK.

The aforementioned methods make full use of complemen-
tary information for page layout modeling. For instances, list
objects have more indentations in page layout. Thus, both of
SRK and VSR achieve better list detection performances than
LFE with layout sensitiveness. On text, LFE-1 and LFE-2
outperform other methods. Generally, texts take up most of the
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Fig. 10. Visualization of POD on the PubLayNet dataset with CP 0.7. (a) Ground truth. (b) LFE-2, CP = 0.7. (c) LFE-1, CP = 0.7. (d) ATSS, CP = 0.7.

(e) YOLACT++, CP = 0.7.

TABLE II

EVALUATION OF THE PROPOSED LFE NETWORK ON
THE PUBLAYNET DATASET [43]

AP (IoU from 0.50 to 0.95 with a step size of 0.05)

Method Text Title List Table  Figure = mAP
SRK [47] 0.947 0900 0951 0972  0.980  0.950
VSR [47] 0.967 0923 0946 0970 0979  0.957
YOLACT++ [4] 0915 0.620 0849 0.897 0.892  0.835
ATSS [45] 0973 0850 0944 0978 0932 0935
LFE-1 0.980 0902 0926 0984 0950  0.948

LFE-2 0.982 0902 0928 0984 0954  0.950

space of the page. Features of texts are effectively enhanced
by our backbone network (Fig. 3), so that our method gets
good performance.

As for small page object title, VSR achieves the best AP
0.923, and our LFE method performs well with an AP of
0.902. This result verifies the effectiveness of that: “LFE”
leads to accurate detection of “small object.”

The proposed LFE-1 and LFE-2 achieve the best AP
0.984 on table, whereas VSR and SRK obtain better APs on
list and figure.

Overall, in spite of being unimodal, using feature enhance-
ment strategies 2)-5) in Section III-B, our method is compara-
ble to multimodal methods VSR and SRK. For text, title, and

table, our LFE method performs well, but for list and figure,
multimodal methods perform better.

D. Visualization of POD With Various CPs

For an insight into the detection abilities of our LFE-1
and LFE-2, detection results with various confidence prob-
abilities (CPs) are visualized in Figs. 8-10. The CP is the
most widely used as an output representing the likelihood
for each predicted class in the state-of-the-art detectors, such
as YOLACT++ [4], ATSS [45], Faster R-CNN [17], Mask
R-CNN [18], and so on, and is used in the detection evaluation
metrics of COCO [46].

As can be seen from Fig. 8, yellow and blue bounding boxes
are used to locate table and figure on the POD2017 dataset.
LFE-2, LFE-1, ATSS, and YOLACT++ produce the same
visual effect with the CP of 0.9 from Fig. 8(b)—(e). That is to
say, for a strict metric CP of 0.9, four detectors achieve well
visual effect according to ground truth in Fig. 8(a).

Fig. 9 shows different visual effects of four detectors with
various CP values. Fuchsia bounding boxes locate formula
objects on the POD2017 dataset. Compared with ground truth
in Fig. 9(a), LFE-2 finds out all figures and formulas, although
the bounding boxes of formulas in the middle of the left
column and the right column do not perfectly match the ground
truth, with the strict CP of 0.9 in Fig. 9(b).
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As shown in Fig. 9(c), there is a small part of formulas
in the middle of the left column that cannot be detected by
LFE-1 with a CP of 0.9. When the CP value decreases to
0.8, there is still a formula LFE-1 that cannot find out. The
number of blocks of feature enhancement has a significant
impact on the detection of “small page object” formula,
as described in Section III-B: “LFE” results in better detection
of “small object,” because LFE-2 has one more block of
feature enhancement than LFE-1.

ATSS does not perform good enough with a CP of 0.9,
as shown in Fig. 9(e). This detector only finds out a figure
and a small part of formulas. This situation improves when
the metric becomes weaker, CP from 0.8 [Fig. 9(f)] to 0.4
[Fig. 9(h)], two figures and all formula are detected gradually.
In Fig. 9(1), YOLACT++ detects two figures when CP ranges
from 0.9 to 0.4.

Fig. 10 compares visual effects of four detectors on the
PubLayNet dataset with a CP of 0.7. Yellow, blue, green,
and red bounding boxes locate table, figure, text, and title
objects, respectively. As can be seen from Fig. 10(b) and (c),
LFE-2 and LFE-1 find out all page objects. ATSS misses a
title in the right column, in Fig. 10(d). YOLACT++ performs
worse in Fig. 10(e). It cannot detect both the title in the
right column and texts above and under the table in the left
column.

Based on the preceding analysis of visual effect, we see
that the proposed LFE-2 and LFE-1 outperform ATSS and
YOLACT++ on ‘“small page objects,” such as formulas on
the POD2017 dataset, titles on the PubLayNet dataset, and
one or two lines of texts on the PubLayNet dataset.

Additionally, the proposed detector can be applied in the
SparkFun Jetbot [48], which is a popular platform and is
capable of deep learning inference. It is powered by NVIDIA
Jetson Nano [49], which has 128 NVIDIA cores. Besides,
the Jetson Nano Developer Kit provides software support for
parallel implementation of different applications. Images are
captured by a Universal Serial Bus (USB) Web camera, and
the High-Definition Multimedia Interface (HDMI) interface is
used for visualizing inference results. Our detector can be
employed in the Pytorch framework of the SparkFun Jetbot
to detect scene text.

V. CONCLUSION

In this work, we propose the LFE network by analyzing
page object distribution in the page layout process. The LFE
backbone network aggregates bottom-up and top-down feature
pyramids sequentially as an enhancement block, and the lateral
skip connection is added after each enhancement block for
retaining the output feature details. In the LFE backbone
network, the introduction of low-level spatial information to
deeper layers can help large objects recognition. Meanwhile,
the propagation of high-level semantic signals upsampled
to higher resolution low-level feature layers enhances the
performance semantically. The LFE network achieves great
results with the mAP of 0.950 on PubLayNet, and the mAP
of 0.892 on POD with strict metric IoU = 0.8. Extensive
experimental results on the two state-of-the-art databases
demonstrate that our LFE network retains more original fea-
ture information and enhances feature extraction and feature

5020310

representation ability on document images. It is capable of
improving the document object detection accuracy.
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